

Miruken-DotNet

[image: _images/miruken_circle_net1.png]
Miruken handle()’s your application!

Table of Contents

	Protocol

	Context
	Hierarchical

	Context Traversal

	Lifecycle

	Handler

	Provide

	Promise

	Configuration
	Configuring Castle Windsor

Protocol

A protocol describes a set of expected behavior. In C# we can define protocols using interfaces.

Context

The context is one of the three major components of Miruken. The other two major components being the protocol and the handler.

In this example we are simply creating a new context:

namespace Example.mirukenExamples.context
{
 using Miruken.Context;

 public class CreatingAContext
 {
 public Context Context { get; set; }

 public CreatingAContext()
 {
 Context = new Context();
 }
 }
}

At the simplest level a context is a collection of handlers.

[image: ../../_images/collectionOfHandlers.png]
Here we are instantiating handlers and adding them to the context:

namespace Example.mirukenExamples.context
{
 using Miruken.Context;

 public class AContextWithHandlerInstances
 {
 public Context Context { get; set; }

 public AContextWithHandlerInstances()
 {
 Context = new Context();
 Context.AddHandlers(new SomeHandler(), new AnotherHandler());
 }
 }
}

You can also rely on a container to create the handler instances. We like to use Castle Windsor,
but as you can see by this example you can use any container you want.
All you need is a handler in the context that implements IContainer
and it will create the handler instances for you. My simple container here just instantiates instances and returns them.

namespace Example.mirukenExamples.context
{
 using System;
 using Miruken.Callback;
 using Miruken.Concurrency;
 using Miruken.Container;
 using Miruken.Context;

 public class RelyingOnAContainerToResolveHandlers
 {
 public Context Context { get; set; }

 public RelyingOnAContainerToResolveHandlers()
 {
 Context = new Context();
 Context
 .AddHandlers(new ContainerHandler())
 .AddHandler<SomeHandler>()
 .AddHandler<AnotherHandler>();
 }
 }

 public class ContainerHandler: Handler, IContainer
 {
 public T Resolve<T>()
 {
 return (T) Resolve(typeof(T));
 }

 private object Resolve(Type type)
 {
 if (type == typeof(SomeHandler))
 return new SomeHandler();

 if (type == typeof(AnotherHandler))
 return new AnotherHandler();

 throw new ArgumentException("Unknown type");
 }

...

Hierarchical

Contexts are also hierarchical. They have a context graph witch mean they know their parent and can create children.

[image: ../../_images/hierarchical.png]
In this example we use the CreateChild() method to create a child context from an existing context:

namespace Example.mirukenExamples.context
{
 using Miruken.Context;

 public class CreatingAChildContext
 {
 public Context Parent { get; set; }
 public Context Child { get; set; }

 public CreatingAChildContext()
 {
 Parent = new Context();
 Child = Parent.CreateChild();
 }
 }
}

Context Traversal

Context traversal is the concept of finding a handler for a message in the current context graph.

SelfOrAncestor is the default TraversingAxis which means that when Miruken is trying to handle a message it starts with the current context. If the current context cannot handle the message, the message will be passed to the parent to be handled. There are several other TraversingAxis. You can see them all described below.

[image: ../../_images/selfOrAncestor.png]
[image: ../../_images/ancestor.png]
[image: ../../_images/child.png]
[image: ../../_images/descendant.png]
[image: ../../_images/descendantReversed.png]
[image: ../../_images/root.png]
[image: ../../_images/self.png]
[image: ../../_images/selfOrChild.png]
[image: ../../_images/selfOrDescendant.png]
[image: ../../_images/selfOrDescendantReversed.png]
[image: ../../_images/selfOrSibling.png]
[image: ../../_images/selfSiblingOrAncestor.png]
[image: ../../_images/sibling.png]

Lifecycle

	Context.End

	Context.Ended

Handler

Handlers implement the application logic described by your protocols.

Provide

[Provide]

Promise

We didn’t set out to write a promise library in C#. It was born out of necessity.
We inherited a C# project written in CE 6 which had no async and await support.
We found that doing asynchronous work by hand is verbose and error prone so we
needed a better way. Thus Miruken’s implementation of the
A+ Promise Specification [https://promisesaplus.com/] was born.
Surprisingly we really like using promises in C#. Especially, since we often
switch back and forth between JavaScript and C#. The code looks and feels
very simular.

Configuration

[image: ../../../_images/miruken_circle_net.png]
Miruken handle()’s your application!

Table of Contents

	Configuring Castle Windsor
	Features

	FeatureInstaller

Configuring Castle Windsor

Note

Miruken has first class integration with Castle Windsor, but Miruken does not require you to use Castle Windsor for your container. Miruken does not even require you to use a container. All of that being said, we love Castle Windsor and use it in our own projects.

One of the main ways of configuring a Castle Windsor container is the Container.Install() method. It accepts a comma seperated list of IWindsorInstaller instances. These installers do all the work of registering objects and configuring the container.

In this very basic Castle Windsor Container all the IWindsorInstaller classes in the current assembly will be run. FromAssembly.This() returns an IWindsorInstaller.

namespace Example.mirukenCastleExamples
{
 using Castle.MicroKernel.Resolvers.SpecializedResolvers;
 using Castle.Windsor;
 using Castle.Windsor.Installer;

 public class BasicWindsorContainer
 {
 public IWindsorContainer Container { get; set; }

 public BasicWindsorContainer()
 {
 Container = new WindsorContainer();
 Container.Kernel.Resolver.AddSubResolver(
 new CollectionResolver(Container.Kernel, true));
 Container.Install(FromAssembly.This());
 }
 }
}

We used to use this simple form of configuration, but found that we had to list assemblies multiple times. Features and FeatureInstaller solve this problem.

Features

At a high level a feature is an implementation of a Miruken concept. It may be a Protocol, Handler, Validator, or Mediator, etc. On a very practical level features are concrete application code implemented across multiple assemblies. The Features object has several ways to specify your application assemblies so that they can be installed in the container. Using Features allows you to specify all your assemblies in one place.

FeatureInstaller

FeatureInstallers inherit from FeatureInstaller and do the container registration and configuration for a Miruken concept across all your feature assemblies.

FromAssemblies(params Assembly[] assemblies)

In this example we pass a comma seperated list of application assemblies into:

Features.FromAssemblies()

	typeof(CreateTeam).Assembly

	Targets the Example.League assembly.

	typeof(CreateStudent).Assembly

	Targets the Example.School assembly.

Next, we specify which FeatureInstallers the application needs. This example configures the ConfigurationFactory using the ConfigurationFactoryInstaller, and Validation using the ValidationInstaller.

namespace Example.mirukenCastleExamples
{
 using Castle.MicroKernel.Registration;
 using Castle.MicroKernel.Resolvers.SpecializedResolvers;
 using Castle.Windsor;
 using League;
 using Miruken.Castle;
 using Miruken.Validate.Castle;
 using School;

 public class FeaturesFromAssemblies
 {
 public IWindsorContainer Container { get; set; }

 public FeaturesFromAssemblies()
 {
 Container = new WindsorContainer();
 Container.Kernel.Resolver.AddSubResolver(
 new CollectionResolver(Container.Kernel, true));

 Container.Install(
 new FeaturesInstaller(
 new ConfigurationFeature(), new ValidateFeature())
 .Use(Classes.FromAssemblyContaining<CreateTeam>(),
 Classes.FromAssemblyContaining<CreateStudent>())
);
 }
 }
}

FromAssembliesNamed(params string[] assemblyNames)

The FromAssembliesNamed() method allows you to specify the assembly name of the feature assemblies you want installed into the container.

namespace Example.mirukenCastleExamples
{
 using Castle.MicroKernel.Registration;
 using Castle.MicroKernel.Resolvers.SpecializedResolvers;
 using Castle.Windsor;
 using Miruken.Castle;
 using Miruken.Validate.Castle;

 public class FeaturesFromAssembliesNamed
 {
 public IWindsorContainer Container { get; set; }

 public FeaturesFromAssembliesNamed()
 {
 Container = new WindsorContainer();
 Container.Kernel.Resolver.AddSubResolver(
 new CollectionResolver(Container.Kernel, true));

 Container.Install(
 new FeaturesInstaller(
 new ConfigurationFeature(), new ValidateFeature())
 .Use(Classes.FromAssemblyNamed("Example.League"),
 Classes.FromAssemblyNamed("Example.School"))
);
 }
 }
}

InDirectory(AssemblyFilter filter)

The InDirectory() method allows you to specify an AssemblyFilter. An AssemblyFilter takes the string name of a directory and a filter predicate to allow only the assemblies you intend.

namespace Example.mirukenCastleExamples
{
 using Castle.MicroKernel.Registration;
 using Castle.MicroKernel.Resolvers.SpecializedResolvers;
 using Castle.Windsor;
 using Miruken.Castle;
 using Miruken.Validate.Castle;

 public class FeaturesInDirectory
 {
 public IWindsorContainer Container { get; set; }

 public FeaturesInDirectory()
 {
 Container = new WindsorContainer();
 Container.Kernel.Resolver.AddSubResolver(
 new CollectionResolver(Container.Kernel, true));

 Container.Install(
 new FeaturesInstaller(
 new ConfigurationFeature(), new ValidateFeature())
 .Use(Classes.FromAssemblyInDirectory(new AssemblyFilter("")
 .FilterByName(x => x.Name.StartsWith("Example."))))
);
 }
 }
}

Index

 _static/up-pressed.png

_images/selfOrAncestor.png

_images/selfOrChild.png

_images/root.png

_static/up.png

_images/self.png

_images/selfOrSibling.png
Self Or Sibling

D
1

Traversal

_images/selfSiblingOrAncestor.png
Self Sibling Or Ancestor

Do
1

Traversal

_images/selfOrDescendant.png
Self Or Descendant

‘c’é

Traversal

_images/selfOrDescendantReversed.png
Self Or Descendant Reversed

Traversal

_images/sibling.png

_static/ajax-loader.gif

_images/hierarchical.png
1A
£ /‘l‘ c

_images/miruken_circle_net.png

_images/descendant.png
Descendant

{&

Traversal

_images/descendantReversed.png
Descendant Reversed

Traversal

_images/miruken_circle_net1.png

nav.xhtml

 Table of Contents

 		
 Miruken-DotNet

 		
 Protocol

 		
 Context

 		
 Hierarchical

 		
 Context Traversal

 		
 Lifecycle

 		
 Handler

 		
 Provide

 		
 Promise

 		
 Configuration

 		
 Configuring Castle Windsor

 		
 Features

 		
 FeatureInstaller

_images/child.png

_static/comment.png

_images/collectionOfHandlers.png
Collection Of Handlers

ErrorHandler

FeatureHandler
InputController

Context

_static/down-pressed.png

_static/comment-bright.png

_images/ancestor.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

